SUBJECT INDEX

Acid efflux	of the interaction of cytochromes, bacterio-
Kinetics of ——— from chloroplasts follow-	chlorophyll and ——— at 77°K in chroma-
ing the acid-base transition (Nishizaki,	tophores of Chromatium D and Rhodo-
Jagendorf) (226) 172	pseudomonas gelatinosa (Dutton) (226) 63
Acid to base phosphorylation	Carotenoid-deficient
——— and membrane integrity in plastids	Spectral and photochemical properties of
of greening maize (Forger, III, Bogorad)	subchromatophore fractions derived from
(226) 383	—— Chromatium by Triton treatment
Actin–myosin interaction	(Ke, Chaney) (226) 341
Effect of trypsin on the ——— (Goll et al.)	Cations
(226) 433	Effects of various ——— on separation of
Adenine nucleotide levels	the two photochemical systems by digitonin
——— and photopigment synthesis in a	treatment (Ohki et al.) (226) 144
growing photosynthetic bacterium (Fanica-	
	Consumption of O in the light by Chlorelle
Gaignier et al.) (226) 135	Consumption of O ₂ in the light by Chlorella
Adrenal chromaffin granules	pyrenoidosa and ——— (Bunt, Heeb) (226)
Electron carriers of the bovine ———	354
(Flatmark et al.) (226) 9	Chlamydomonas reinhardtii
Adrenal medulla	Light-induced pH changes by cells of
Improved method for the large-scale isola-	: Dependence on CO ₂ uptake (Atkins,
tion of chromaffin granules from bovine	Graham) (226) 481
——— (Helle et al.) (226) 1	Chlamydomonas reinhardtii
Anabaena variabilis	Mutant strains of ——— with lesions on the
Increased content of cytochromes 554 and	oxidizing side of photosystem II (Epel,
562 in ——— cells grown in the presence of	Levine) (226) 154
diphenylamine (Ogawa, Vernon) (226) 88	Chlorella
ATPase	Magnetic field effect on the chlorophyll
Effect of hydroxylamine on microsomal	fluorescence in ——— (Geacintov et al.)
——— (Shamoo) (226) 285	(226) 486
Azotobacter	Chlorella
Electron transport system in nitrogen fixa-	Thermoluminescence in spinach chloroplasts
tion by ———. III. Requirements for	and in ——— (Mar, Govindjee) (226) 200
NADPH-supported nitrogenase activity	Chlorella pyrenoidosa
(Benemann et al.) (226) 205	Consumption of O_2 in the light by ———
Bacteriochlorophyll	and Chlamydomonas reinhardtii (Bunt,
Cytochrome C553 and ——— interaction at	Heeb) (226) 354
77°K in chromatophores and a subchroma-	Chlorella pyrenoidosa
tophore preparation from Chromatium D	Relationships between the photon distribu-
(Dutton et al.) (226) 81	tion between the two photosystems, the
Bacteriochlorophyll	concentration of System II reaction centers
Oxidation-reduction potential dependence	and the intersystem equilibrium constant
of the interaction of cytochromes,——and	in ——— (Delrieux, De Kouchkovsky) (226)
carotenoids at 77°K in chromatophores of	409
Chromatium D and Rhodopseudomonas	Chloride transport
gelatinosa (Dutton) (226) 63	——— and photosynthesis in cells of Grif-
Calcium exchange	fithsia (Lilley, Hope) (226) 161
Mitochondrial calcium uptake in the per-	Chlorophyll fluorescence
fused contracting rat heart and the influence	Magnetic field effect on the ——— in Chlo-
of epinephrine on —— (Horn et al.) (226) 459	rella (Geacintov et al.) (226) 486
Carbon dioxide uptake	Chloroplasts
Light-induced pH changes of Chlamydo-	Effects of monovalent cations on light ener-
monas reinhardtii: Dependence on ———	gy distribution between two pigment sys-
(Atkins, Graham) (226) 481	tems of photosynthesis in isolated spinach
Cardiolipin	(Murata) (226) 422
Tightly bound —— in cytochrome oxi-	Chloroplasts
dase (Awasthi et al.) (226) 42	Further evidence for stroma lamellae as a
Carotenoids	source of Photosystem I fractions from
Oxidation-reduction potential dependence	spinach — (Goodchild, Park) (226) 393

- in nitrogen fixation by Azotobacter.

III. Requirements for NADPH-supported

nitrogenase activity (Benemann et al.) (226)

205

Chloroplasts Cytochromes Kinetics of acid efflux from ----- follow-Changes in respiratory control and ing the acid-base transition (Nishizaki. in liver mitochondria during hibernation Jagendorf) (226) 172 (Shug et al.) (226) 300 Cytochromes Low temperature photo-induced reactions Oxidation-reduced potential dependence of in green leaves and ——— (Floyd et al.) the interaction of _____, bacteriochlorophyll and carotenoids at 77 °K in chromato-(226) 103 phores of Chromatium D and Rhodopxeu-Chloroplasts Site of action of plastocyanin in isolated domonas gelatinosa (Dutton) (226) 63 - (Avron, Shnevour) (226) 498 Cytochromes 554 and 562 Increased content of -Chloroplasts --- in Anabaena variabilis cells grown in the presence of di-Studies on the enzyme systems involved in electron and energy transfer in isolated phenylamine (Ogawa, Vernon) (226) 88 I. Effect of endogenous phosphate Cytochrome c on the photophosphorylation coupled with Consecutive oxidation and reduction of noncyclic electron transport in intact in the presence of hydrogen peroxide and chloroplasts (Frackowiak, Kaniuga) (226) copper histidine (Davison, Hulett) (226) 313 360 Cytochrome C553 - and bacteriochlorophyll interaction Chloroplasts Thermoluminescence in spinach ——— and at 77°K in chromatophores and a subchroin Chlorella (Mar, Govindjee) (226) 200 matophore preparation from Chromatium Chromaffin granules D (Dutton et al.) (226) 81 Electron carriers of the bovine adrenal Cytochrome f - (Flatmark et al.) (226) 9 Laser-induced reactions of P700 and ---Chromatfin granules in a blue-green alga, Plectonema boryanum Improved method for the large-scale isola-(Hvama, Ke) (226) 320 tion of ----- from bovine adrenal medulla Cytochrome oxidase (Helle et al.) (226) I Tightly bound cardiolipin in ---- (Awas-Chromatium D thi et al.) (226) 42 Cytochrome C553 and bacteriochlorophyll Diatom interaction at 77°K in chromatophores and Modification of the absorption spectrum in a subchromatophore preparation from the far red of a cultured in red light (Jupin, (Dutton et al.) (226) 81 Giraud) (226) 98 Chromatium D Duroquinone reductase Low potential photosystem in -Quinone interaction with the respiratory (Seibert et al.) (226) 189 chain-linked NADH dehydrogenase of beef Chromatium D heart mitochondria. II. -Oxidation-reduction potential dependence (Ruzicka, Crane) (226) 221 of the interaction of cytochromes, bacterio-Electron and energy transfer chlorophyll and carotenoids at 77°K in Studies on the enzyme systems involved in chromatophores of — and Rhodopseu-- in isolated chloroplasts. I. Effect of domonas gelatinosa (Dutton) (226) 63 endogenous phosphate on the photophosphorylation coupled with noncyclic elec-Spectral and photochemical properties of tron transport in intact chloroplasts subchromatophore fractions derived from (Frackowiak, Kaniuga) (226) 360 carotenoid-deficient — by Triton treat-Electron carriers ment (Ke, Chaney) (226) 341 - of the bovine adrenal chromaffin Chromatophores granules (Flatmark et al.) (226) 9 Cytochrome C553 and bacteriochlorophyll Electron transport interaction at 77°K in ---- and a sub-Energy transduction in ——— (DeVault) chromatophore preparation from Chroma-(226) 193 tium D (Dutton et al.) (226) 81 Electron transport Studies on the mechanism of inhibition of Chromatophores Oxidation-reduction potential dependence the mitochondrial ----- by antimycin. IV. of the interaction of cytochromes, bacterio-Effect of surface-active agents on the antichlorophyll and carotenoids at 77°K in mycin-inhibition curve and availability of of Chromatium D and Rhodopseusulphydryl groups of the heart-muscle preparation (Bryła et al.((226) 213 domonas gelatinosa (Dutton) (226) 63 Copper histidine Electron transport system

Consecutive oxidation and reduction of

cytochrome c in the presence of hydrogen

peroxide and ——— (Davison, Hulett) (226)

313

Epinephrine	heart II Duroquinone reductace
	heart II. Duroquinone reductase
Mitochondrial calcium uptake in the per-	activity (Ruzicka, Crane) (226) 221
fused contracting rat heart and the influence	Mitochondrial calcium uptake
of ——— on calcium exchange (Horn et al.)	——— in the perfused contracting rat heart
(226) 459	and the influence of epinephrine on calcium
Flavins	exchange (Horn et al.) (226) 459
Acceptor specificity of ——— and flavo-	Mitochondrial electron transport
proteins. I. Techniques for anaerobic spec-	Studies on the mechanism of inhibition of
trophotometry (Dixon) (226) 241	the —— by antimycin. IV. Effect of sur-
Flavins	face-active agents on the antimycin-inhibi-
Acceptor specificity of ——— and flavo-	tion curve and availability of sulphydryl
proteins. II. Free flavins (Dixon) (226) 259	groups of the heart-muscle preparation
Flavins	(Bryła et al.) (226) 213
Acceptor specificity of ——— and flavopro-	Myosin-actin interaction
teins. III. Flavoproteins (Dixon), (226)	Effect of trypsin on the ——— (Goll et al.)
269	(226) 433
Flavoproteins	NADH dehydrogenase
Acceptor specificity of flavins and ———.	Quinone interaction with the respiratory
I. Techniques for anaerobic spectrophoto-	chain-linked — of beef heart mito-
metry (Dixon) (226) 241	chondria. III. Duroquinone reductase ac-
Flavoproteins	tivity (Ruzicka, Crane) (226) 221
Acceptor specificity of flavins and ———.	Nitrogen fixation
II. Free flavins (Dixon) (226) 259	Electron transport system in ———————————————————————————————————
Flavoproteins	Electron transport system in ——— by
Acceptor specificity of flavins and ———.	Azotobacter. III. Requirements for
III Disease tries (Diseas) (226) 260	
III. Flavoproteins (Dixon) (226) 269	NADPH-supported nitrogenase activity
Greening of etiolated bean leaves	(Benemann et al.) (226) 205
——. I. The initial photoconversion pro-	Nitrogenase activity
cess (Throne) (226) 113	Electron transport system in nitrogen fixa-
Greening of etiolated bean leaves	tion by Azotobacter. III. Requirements for
——. II. Secondary and further photo-	NADPH-supported ——— (Benemann et
conversion processes (Thorne) (226) 128	al.) (226) 205
Hibernation	Oxaloacetate
Changes in respiratory control and cyto-	
	Investigation on the penetration of ———
chromes in liver mitochondria during	into rat liver mitochondria (Bohnensack,
——— (Shug et al.) (226) 309	Kunz) (226) 33
Hydroxylamine	Oxidative phosphorylation
Effect of —— on microsomal ATPase	Activation energies for the ATP-driven re-
(Shamoo) (226) 285	versal of ——— in submitochondrial par-
Light-induced pH changes	ticles (Schuurmans Stekhoven et al.) (226) 20
——— by cells of Chlamydomonas rein-	Oxygen production
hardtii: Dependence on CO ₂ uptake (Atkins,	3-(3,4-Dichlorophenyl)-1,1-dimethylurea-in-
Graham) (226) 481	sensitive — in a cell-free preparation
Membrane	from Phormidium luridum that shows
Acid to base phosphorylation and ———	redox potential dependent coupling to one-
integrity in plastids of greening maize	electron oxidants (Diner, Mauzerall) (226)
(Forger, III, Bogorad) (226) 383	
	492 D
Microsomal ATPase	P ₇₀₀
Effect of hydroxylamine on (Shamoo)	Experimental determination of the molar
(226) 285	differential extinction coefficient of ———
Mitochondria	(Ke et al.) (226) 53
Changes in respiratory control and cyto- chromes in liver ————————————————————————————————————	P700
chromes in liver ———— during hibernation	Laser-induced reaction of ——— and cyto-
(Shug et al.) (226) 309	chrome f in a blue-green alga Plectonema
Mitochondria	boryanum (Hyama, Ke) (226) 320
Investigation on the penetration of oxalo-	Phormidium luridum
acetate into rat liver — (Bohnensack,	3-(3,4-Dichlorophenyl)-1,1-dimethylurea-in-
Kunz) (226) 33	sensitive oxygen production in a cell-free
Mitochondria	preparation from ———— that shows redox
Phosphate transport in rat-liver ——	potential dependent coupling to one-elec-
(Hoek et al.) (226) 297	tron oxidants (Diner, Mauzerall) (226) 492
Mitochondria	Phosphate transport
Quinone interaction with the respiratory	——— in rat-liver mitochondria (Hoek et
chain-linked NADH dehydrogenase of beef	al.) (226) 297
	,

Photochemical systems Photosystems Effects of various cations on separation of Relationships between the photon distributhe two ---- by digitonin treatment tion between the two _____, the concen-(Ohki et al.) (226) 144 trations of System II reaction centers and the intersystem equilibrium constant in Photoconversion process Chlorella pyrenoidosa (Delrieux, De Kouch-Greening of etiolated bean leaves. I. The kovsky) (226) 409 initial -- (Thorne) (226) 113 Pigment systems Photoconversion processes Effects of monovalent cations on light ener-Greening of etiolated bean leaves. II. Secondary and further ——— (Thorne) (226) 128 gy distribution between two ---- of photosynthesis in isolated spinach chloro-Photo-induced reactions plasts (Murata) (226) 422 Low temperature ——— in green leaves and chloroplasts (Floyd et al.) (226) 103 Acid to base phosphorylation and membrane Photophosphorylation integrity in ---— of greening maize (For-Studies on the enzyme systems involved in ger, III, Bogorad) (226) 383 electron and energy transfer in isolated Plastids chloroplasts. I. Effect of endogenous phos-Coupling factor for photosynthetic phosphate on the —— coupled with noncyclic electron transport in intact chloroplasts phorylation from plastids of light- and dark-(Frackowiak, Kaniuga) (226) 360 grown maize (Lockshin et al.) (226) 366 Photopigment synthesis Plastocyanin Site of action of ---- in isolated chloro-Adenine nucleotide levels and growing photosynthetic bacterium (Fanicaplasts (Avron, Shnevour) (226) 408 Gaignier et al.) (226) 135 Plectonema borvanum Photoreactions in System II Laser-induced reactions of P700 and cytochrome f in a blue-green alga, Two -of plant photosynthesis (Knaff. Arnon) (226) 400 (Hiyama, Ke) (226) 320 Photosynthesis Pteridines Effects of monovalent cations on light ener-Subcellular localization of the --- in gy distribution between two pigment strain R-26 of Rhodopseudomonas spherosystems of — in isolated spinach chloroides (Reed, Mayne) (226) 477 plasts (Murata) (226) 422 Ouinone interaction Photosynthesis - with the respiratory chain-linked Chloride transport and -- in cells of NADH dehydrogenase of beef heart mito-Griffithsia (Lilley, Hope) (226) 161 chondria. II. Duroquinone reductase activi-Photosynthesis ty (Ruzicka, Crane) (226) 221 Two photoreactions in System II of plant Redox potential dependent coupling - (Knaff, Arnon) (226) 400 3-(3,4-Dichlorophenyl)-1,1-dimethylurea-in-Photosynthetic bacterium sensitive oxygen production in a cell-free Adenine nucleotide levels and photopigment preparation from Phormidium luridum that synthesis in a growing (Fanicashows --- to one-electron oxidants Gaignier et al.) (226) 135 (Diener, Mauzerall) (226) 492 Photosynthetic phosphorylation Respiratory chain-linked NADH dehydrogen-Coupling factor for ——— from plastids of light- and dark-grown maize (Lockshin et Ouinone interaction with the al.) (226) 366 beef heart mitochondria. II. Duroquinone Photosynthetic pigments reductase activity (Ruzicka, Crane) (226) Mutant strains of Rhodopseudomonas 221 spheroides which form - aerobically Respiratory control in the dark. Growth characteristics and en-Changes in -- and cytochromes in liver zymic activities (Lascelles, Wertlieb) (226) mitochondria during hibernation (Shug et 328 al.) (226) 309 Photosystem Rhodopseudomonas gelatinosa Low temperature ——— in Chromatium D Oxidation-reduction potential dependence (Seibert et al.) (226) 189 of the interaction of cytochromes, bacterio-Photosystem I chlorophyll and carotenoids at 77°K in Further evidence for stroma lamellae as a Chromatophores of Chromatium D and source of - fractions from spinach - (Dutton) (226) 63 chloroplasts (Goochild, Park) (226) 393 Rhodopseudomonas spheroides Photosystem II Mutant strains of which form Mutant strains of Chlamydomonas reinphotosynthetic pigments aerobically in the hardtii with lesions on the oxidizing side of dark. Growth characteristics and enzymic

activities (Lascelles, Wertlieb) (226) 328

- (Epel, Levine) (226) 154

474 SUBJECT INDEX

Rhodopseudomonas spheroides oxidative phosphorylation in ---- (Schuur-Subcellular localization of the pteridines in mans Stekhoven et al.) (226) 20 strain R-26 of ——— (Reed, Mayne) (226) Thermoluminescence ---- in spinach chloroplasts and in Chlo-477 Stroma lamellae rella (Mar, Govindjee) (226) 200 Further evidence for ----- as a source of Troponin Effect of Ca²⁺ on the sulphydryl reactivity Photosystem I fractions from spinach chloof ——: Evidence for a Ca²⁺-induced roplasts (Goodchild, Park) (226) 393 Subchromatophore fractions conformational charge (Fuchs) (226) 453 Spectral and photochemical properties of Ubiquinone - derived from carotenoid-deficient Optical absorption spectrum of half-reduced Chromatium by Triton treatment (Ke, - (Land et al.) (226) 239 Chaney) (226) 341 Ubiquinone-1 Submitochondrial particles Electrochemical studies of the redox be-Activation for the ATP-driven reversal of haviour of --- (Marcus, Hawley) (226) 234